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High-energy scattering as a collision of shock waves

A typical hadron-hadron collision viewed from the c.m. frame has the form of
scattering of two shock waves. Regge limit: [/ > everything else
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High-energy scattering as a collision of shock waves

A typical hadron-hadron collision viewed from the c.m. frame has the form of
scattering of two shock waves.

E>>m
»
AN /
shock waves
# Q # 0: What is a scattering of two QCD shock

waves?

» Big Q: Produced particles/fields << S.g?
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Rapidity factorization

g,

ni

nm

c.m.

At first, we integrate over “red” glu-
ons moving with rapidities in the
central region 1) ~ 7¢.m -

They interact with the *“external”
fileds (to be integrated over later)
with rapidities n ~ n4 and 17 ~ 1p
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Rapidity factorization

Consider the propagation of the red
gluon in the background of blue glu-
ons with greater rapidity
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Fast-moving hadron = QCD shock wave

Fast-moving (blue) fileds shrink into a pancake A, ~ d(z_)
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Fast-moving hadron = QCD shock wave

Fast-moving (blue) fileds shrink into a pancake A, ~ d(z_)
Interaction with the shock wave Is instantaneous
=> no time to deviate in transverse plane
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Fast-moving hadron = QCD shock wave

Fast-moving (blue) fileds shrink into a pancake A, ~ d(z_)
Interaction with the shock wave is instantaneous

=> no time to deviate in transverse plane

=> the interaction is described by the Wilson line

V. = oops + 21, —oopa + 21],  [w,y] = Pe'th dulem Auluat (=)
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Fast-moving hadron = QCD shock wave

Fast-moving (blue) fileds shrink into a pancake A+ ~ o(x_)
Interaction with the shock wave is instantaneous

=> no time to deviate in transverse plane

=> the interaction is described by the Wilson line

V,=loops + 21, —00ops + 21|, |z,y| = Peiafy du(z—y)* Au(ur+(1-u)y)

Propagator in the shock-wave background = (free propagator)
X (Instantaneous interaction with the shock wave ~ V)X (free propagator)
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Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: A, ~ d(x_), A_ = A, = 0.

=
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Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: A, ~ d(x_), A_ = A, = 0.
Axial (temporal) gauges: the shock wave Is a piece-wise pure gauge

AT =V(20)0(2) + Va(z)0(—21), Ap=A_=0, Vi= v*gaiv

Glz,y) = [deV] (x| )gVi(2 (= )V (2 )t Vi(y )
=
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Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: A, ~ d(x_), A_ = A, = 0.
Axial (temporal) gauges: the shock wave Is a piece-wise pure gauge

AT =V(20)0(2) + Va(z)0(—21), Ap=A_=0, Vi= v*gaiv

=3

Gla,y) = Ja=V (@ om0V, () tmVal )

The source for such a field is
expi [ @21 (Vi(21) = Vi(z1)} (0, F-1,0).)

(0,F_;,0), = fdu[ZLy upr + 21 [ F_ij(upr + 21 ) |upr + 21, 21|
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Second shock wave

Consider now the propagation of
the red gluon in the background of
green gluons with greater rapidity
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Second shock wave

Covariant gauges:
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Second shock wave

Axial gauges: U, = Ul é@'U

The source iIs
exp{i/d%L(?/{f — Z/{%)(ZJ_)((), F—I—ia O)z}

0, Fy;,0] = de[ZL, upe + 2o | Fpi(ups + 21 ) [ups + 21, 21 |

= [0, 0opa]. iz [oops, 0]. + [0, —oopal. iz [—oops, 0],
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Scattering of two shock waves

Gluons in the central region of rapidity move in the “external” fields of two
shock waves

In the axial gauges
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Scattering of two shock waves

Gluons in the central region of rapidity move in the “external” fields of two
shock waves

In the axial gauges

Integration over A fields gives the effective action

6ZSeﬂ”(UquaA77) :/DA GZSQCD(A>+ZICZ2ZJ_{(V{_Vé)z(O,F—@,O)z—f—(Uf—U%)z[O,F-|_@,O]z}
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Rapidity < slope of the Wilson line An=mn — 1

-- - Z

4

o o \\Y2
eteft (Ui, Vi, Am) :/DA eiSQCD(A)-I-ifdQZL{(Vf—Vé)z(O,F—i,O)z+(Uf—U§)z[0,F+¢,0]z}

(0, F_;,0), = (0,00n1),10;(cony,0), + (0, —oony),20;(—oonq, 0).,

0, F_;,0], = |0, congl,10;[oons, 0], + |0, —oons|,10;|—ocons, 0],

Sei gives the small-z evolution of the Wilson-line operators
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Classical YM equation

BASIC IDEA: o, = a5(Q,) < 1 = SEMICLASSICS IS RELEVANT

McLerran & Venugopalan
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Classical YM equation

BASIC IDEA: o, = &S(QS) < 1 = SEMICLASSICS IS RELEVANT
McLerran & Venugopalan

DMF,,,, = ——(sources)

A,
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Classical YM equation

BASIC IDEA: o, = &S(QS) < 1 = SEMICLASSICS IS RELEVANT
McLerran & Venugopalan

DMF,,,, = ——(sources)

A,

Two methods of the solution on the market:
# Numerical simulations. Venugopalan & Krasnitz

# Perturbative expansion in strength of one of the shock waves
McLerran et al, Kovchegov & Mueller
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Classical YM equation

BASIC IDEA: o, = &S(QS) < 1 = SEMICLASSICS IS RELEVANT
McLerran & Venugopalan

DMF,,,, = ——(sources)

A,

Two methods of the solution on the market:
# Numerical simulations. Venugopalan & Krasnitz

# Perturbative expansion in strength of one of the shock waves
McLerran et al, Kovchegov & Mueller

& expansion in powers of commutators [U, V] (calculated up to [U, V%)

Eff. action —p.¢



The expansion in commutators

if U, V] =0

= piece-wise pure gauge .
QED-like: no interaction = no particle production
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The expansion in commutators

if U, V] =0

= piece-wise pure gauge .
QED-like: no interaction = no particle production

If (U, V] # 0 one can take this ansatz
A = A9 =0, AO =yYi0(x,) + UO(—2y) + ViO(z_) + Vib(—z_)

as a trial configuration for the classical solution and improve it order by order in
\U, V] by calculating Feynman diagrams in the background of the trial configu-
ration.
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The expansion in commutators

Linear term (source) for the trial configuration

T, = D ([Z/{lb Vil — 1+ k)0(2z)0(2_) + 3 similar terms

Ay =Up0(xy) + U 0(—21) + Vi 0(x-) + Vi, 0(—2-) + Q,
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The expansion in commutators

Linear term (source) for the trial configuration

T, = D ([L[lb Vil — 1+ k)0(2z)0(2_) + 3 similar terms

A, = Z/{ﬁ@(m) + Z/{iﬂ(—m) — Vﬁﬂ( )+ V2u (—z_) + Q,

Solve the YM eqgn for @Q,(x) by iterations < calculate Feynman dia-
grams in the external field A(

Eff. action —p.1:



1/2-order approximation: a piece-wise pure gauge field

121_{_ — 121_ — O
A" = WLz )0(x_) + Wil(—x)0(x_)

Wi(z1) = Ui+ V| + Ej = pure gauge
Wi(z,)) = UL+V +EL = ..
Wi(z) = U +Vi+ Bl = ..
Wo(z,) = UL+ Vi+EL = ..

In the first order

a _ 2 t t q1\ab (v — 2)§ | o b
Ei(x,) =ig|dz(UU + V, VI —1) (Ui, Vi), — 1 k)

212 (x — 2)7

bF gauge D*Q, = 0 — (i0; + g[Us + Vi, )E* =0
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(), in the first order
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(), in the first order
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(), in the first order
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(), in the first order
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(), in the first order

QUL (k) = WeQE W] =

(D)p
p2,u
k+

E'=FE, - E} —E+E =W, — W, — WL +Wj

1 . .
{25 Vi — Vi, B — B +

5127 Uy — Uy, B — B + 2Ej}

Check: bF gauge condition (0" + gk, )Q,, = 0
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(), in the first order

QUL (k) = WeQE W] =

(L)
pZ,u

1 . .
{25 Vi — Vi, B — B + 2

k2 U k_
E'=FE, - E} —E+E =W, — W, — WL +Wj
Check: bF gauge condition (0" + gk, )Q,, = 0

Lipatov vertex (effective vertex of gluon emission):

1 o 2 ZYWVF _
LV (k) = KQY, (k) =

k2=0
opt 4 2L - LIV, — Vo, Bl — Ei) + 25—1% Uy, B

Effective action = product of two Lipatov vertices.
In the [U, V']? order

L5 L™ = 4B, E®

- Ej)

Ui — Usi, Y, — Ej) + 2B+ |
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Shortcut to the effective action

The trial configuration:
A_=A, =0and

+ 6(_$+)H(fﬁ_)WLz + 6(_$+)(9(_ZE_)WE
In each of the four quadrants of the space the
field is a pure gauge

Wei = Uy + Vi + By
Wi = U + Vi + L
Wri = Ui + Voi + Eg;
Wpgi = Uz + Vo + L
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Shortcut to the effective action

The trial configuration:
A_=A, =0and

+ 6(_$+)H(fﬁ_)WLz + 6(_$+)(9(_ZE_)WE
In each of the four quadrants of the space the
field is a pure gauge

Wei = Uy + Vi + By
Wi = U + Vi + L
Wri = Ui + Voi + Eg;
Wpgi = Uz + Vo + L

T, =20(zy)0(z-)E; =

Seft = /dzdz’Tia(z)Tai(z’) ~ aSAn/dzzLEf(zL)Eai(zL)
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Gauge-invariant form of the effective action

Seff(‘/l) ‘/27 U17 U27 An) —

J aSA arai
Vi = Vo) Uy =)} + = LIL

L? Q(WF — Wi — Wpg + WB)?
— Z(EF — B — ERp+ EB)?
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Gauge-invariant form of the effective action

Seff(‘/l) ‘/27 Ul) U27 An) —

) CVSA a7 ai
Vi = Vo) Uy =)} + = LIL

~
S
I

; Q(WF — Wi — Wpg + WB)?
= 2(Er — EL — Egr + EB);

Gauge invariant representation (HIMST):

1

4LaiL'(il — tI'[OOph F—i7 _Oopl]OOPQ [Oop27 F—I-i7 _OOPQ]OOIH
X [Oopla _Oopl]—oopg [—OOPQ, OOPQ]—OOpl T CYCHC perin.

loop, F_;, —oop1] = [ duloopy, up | F_;(ups) [upr, —ocopi ]
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Gauge-invariant form of the effective action

Seff(‘/la ‘/27 U17 U27 An) —

) OzSA a7Tal
(V1 — Vg)m(ul — Z/{Q),? -+ 1 anL

L,? — Q(WF — W — Wg + WB),?
— Q(EF — b — Ep + EB),?

Gauge invariant representation (HIMST):

1
ZLQZL? — tr[OOph F—i7 _Oopl]OOp2 [OOPQ? F‘H’ _OOpQ]OOpl

X [Ooph _Oopl]—oopQ [—OOpg, OOPQ]—OO]M + CYCHC perm.

loopy, L, —oopy] = ffooodu[oopl, upy | F_;(upy)|upy, —oop:]
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Functional integral over the Wilson-line variables

64»?n_;v3n)g@4?1_LGM)ai
1 3 3 . 3
= / DU DU DV DV

exp { (V" = Vi) - Ug)

— (U = U = V)

+ (D = Dy — Uy

Tin . NN N\ a n n\ai . Mn — M — a (1 4n— n— at
/ DA€ZS—|—7,(V17 =V ) Uy Uy ) i (Vy 1_V2 1)n(U1 1_7/{2 Y
Nn—1

VT VU T Uy ) e Ly (VI U ) Ly (VT U
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Functional integral over the Wilson-line variables

o1t (U1,U2, Vi, Vaim —n2)

DU}7 DU DV DVQU ifd?x ) [(Vi—Va) (U Uyt a2—|—f771d77£ (U1,Uz,V1,Va,n)]
Up=U !
0

L(Ukﬁ?vkan) — _(Vl VQ)@ an

(U —Ug)™ —i=t LU, V)L™ (U, V)] |

L; is local in terms of 11/’s but unfortunately non-local in terms of U and V.

This formula contains both “upside down” and “bottom up” small-x “fan”
evolutions = pomeron loops

A>>1, B>>1 pomeron loops
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Conclusions

# High-energy hadron-hadron scattering < collision of two QCD shock
waves (Color Glass Condensates?)

# For two nuclei, A and B, the expansion in commutators of Wilson lines is a
symmetic expansion in both % or % parameters.

» L(U,V) > pomeron loops (= unitarity?)
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Conclusions

# High-energy hadron-hadron scattering < collision of two QCD shock
waves (Color Glass Condensates?)

# For two nuclei, A and B, the expansion in commutators of Wilson lines is a
symmetic expansion in both % or % parameters.

» L(U,V) > pomeron loops (= unitarity?)

Outlook
e The [U,V]* termin L
# Big Q: What is the field produced by the collision (in all orders in [U, V'])?
® & Big Q: S in (in all orders in [U, V']) ?
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